LeetCode 155. Min Stack

Question

Design a stack that supports push, pop, top, and retrieving the minimum element in constant time.

Implement the MinStack class:

  • MinStack() initializes the stack object.
  • void push(int val) pushes the element val onto the stack.
  • void pop() removes the element on the top of the stack.
  • int top() gets the top element of the stack.
  • int getMin() retrieves the minimum element in the stack.

Example 1:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
Input
["MinStack","push","push","push","getMin","pop","top","getMin"]
[[],[-2],[0],[-3],[],[],[],[]]

Output
[null,null,null,null,-3,null,0,-2]

Explanation
MinStack minStack = new MinStack();
minStack.push(-2);
minStack.push(0);
minStack.push(-3);
minStack.getMin(); // return -3
minStack.pop();
minStack.top(); // return 0
minStack.getMin(); // return -2

Constraints:

  • -231 <= val <= 231 - 1
  • Methods pop, top and getMin operations will always be called on non-empty stacks.
  • At most 3 * 104 calls will be made to push, pop, top, and getMin.

Source: https://leetcode.com/problems/min-stack/

Solution

We use a monotonic stack to maintain potential min elements in the future. Monotonic data structures are very effective in solving max/min problems.

This solution can be further optimized. For example, we can replace mins with an object stack that contains <value, times>, so that we can save space when there are many mins with the same value.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
public class MinStack {
private Deque<Integer> stack;
// stack of candidate minimums
// only keep candidates that can be the min after a series of operations
private Deque<Integer> mins;

public MinStack() {
this.stack = new ArrayDeque<>();
this.mins = new ArrayDeque<>();
}

public void push(int val) {
stack.push(val);
if (mins.isEmpty()) {
mins.push(val);
} else if (val <= mins.peek()) {
mins.push(val);
}
}

// @pre: stack is not empty
public void pop() {
if (stack.isEmpty()) {
return;
}
int val = stack.pop();
if (val == mins.peek()) {
mins.pop();
}
}

// @pre: stack is not empty
public int top() {
return stack.peek().intValue();
}

// @pre: stack is not empty
public int getMin() {
return mins.peek();
}
}
Author

Weihao Ye

Posted on

2022-01-09

Updated on

2022-01-10

Licensed under