Given an array of non-negative integers arr, you are initially positioned at start index of the array. When you are at index i, you can jump to i + arr[i] or i - arr[i], check if you can reach to any index with value 0.
Notice that you can not jump outside of the array at any time.
Example 1:
1 2 3 4 5 6
Input: arr = [4,2,3,0,3,1,2], start = 5 Output: true Explanation: All possible ways to reach at index 3 with value 0 are: index 5 -> index 4 -> index 1 -> index 3 index 5 -> index 6 -> index 4 -> index 1 -> index 3
Example 2:
1 2 3 4 5
Input: arr = [4,2,3,0,3,1,2], start = 0 Output: true Explanation: One possible way to reach at index 3 with value 0 is: index 0 -> index 4 -> index 1 -> index 3
Example 3:
1 2 3
Input: arr = [3,0,2,1,2], start = 2 Output: false Explanation: There is no way to reach at index 1 with value 0.
// BFS, Time Complexity O(n) publicbooleancanReach(int[] arr, int start){ int len = arr.length; boolean[] visited = newboolean[len]; // initialized with false Queue<Integer> queue = new LinkedList<>(); // store indexes queue.add(start);
while (!queue.isEmpty()) { int currIndex = queue.poll(); // if current path includes a visited index, it can be replaced if (visited[currIndex]) { continue; } if (arr[currIndex] == 0) { returntrue; } visited[currIndex] = true; if (currIndex + arr[currIndex] < len) { queue.add(currIndex + arr[currIndex]); } if (currIndex - arr[currIndex] >= 0) { queue.add(currIndex - arr[currIndex]); } } returnfalse; }
privatebooleandfs(int[] arr, boolean[] visited, int start, int len){ if (start < 0 || start >= len || visited[start]) { returnfalse; } if (arr[start] == 0) { returntrue; } visited[start] = true; return dfs(arr, visited, start - arr[start], len) || dfs(arr, visited, start + arr[start], len); }
// DFS, Time Complexity O(n) publicbooleancanReach2(int[] arr, int start){ int len = arr.length; boolean[] visited = newboolean[len]; // initialized with false return dfs(arr, visited, start, len); }