There is a robot on an m x n grid. The robot is initially located at the top-left corner (i.e., grid[0][0]). The robot tries to move to the bottom-right corner (i.e., grid[m - 1][n - 1]). The robot can only move either down or right at any point in time.
Given the two integers m and n, return the number of possible unique paths that the robot can take to reach the bottom-right corner.
The test cases are generated so that the answer will be less than or equal to 2 * 109.
Example 1:
1 2
Input: m = 3, n = 7 Output: 28
Example 2:
1 2 3 4 5 6
Input: m = 3, n = 2 Output: 3 Explanation: From the top-left corner, there are a total of 3 ways to reach the bottom-right corner: 1. Right -> Down -> Down 2. Down -> Down -> Right 3. Down -> Right -> Down
// Time Complexity O(mn), Space Complexity O(mn) publicintuniquePaths(int m, int n){ if (m == 1 || n == 1) { return1; }
// dp[i][j] represents the number of unique paths from (0,0) to (i,j) int[][] dp = newint[m][n]; for (int i = 0; i < m; i++) { dp[i][0] = 1; } for (int j = 0; j < n; j++) { dp[0][j] = 1; } for (int i = 1; i < m; i++) { for (int j = 1; j < n; j++) { // one grid can only be reached from top or left dp[i][j] = dp[i][j - 1] + dp[i - 1][j]; } } return dp[m - 1][n - 1]; }
// Time Complexity: O(mn), Space Complexity: O(n) // space complexity can be further optimized to O(min(m, n)) at the expense of readability publicintuniquePaths2(int m, int n){ if (m == 1 || n == 1) { return1; }
if (n > m) { return uniquePaths2(n, m); }
// dp[j] represents the number of unique paths from (0,0) to (i,j) // i is the round number when dp[j] is written // the optimization direction is similar to fibonacci // we only use the last row of 2D dp array, so we can replace it with a 1D dp array int[] dp = newint[n]; for (int j = 0; j < n; j++) { dp[j] = 1; } for (int i = 1; i < m; i++) { for (int j = 1; j < n; j++) { dp[j] = dp[j - 1] + dp[j]; } } return dp[n - 1]; }