Coding Math
Modular arithmetic
$a\equiv b\space(\text{mod}\space n)$ means a mod n = b mod n
. The parentheses mean that $(\text{mod}\space n)$ applies to the entire equation, not just to the right-hand side.
Reflexivity, Symmetry and Transitivity:
- $a\equiv a\space(\text{mod}\space n)$
- $a\equiv b\space(\text{mod}\space n) \Leftrightarrow b\equiv a\space(\text{mod}\space n)$
- If $a\equiv b\space(\text{mod}\space n)$ and $b\equiv c\space(\text{mod}\space n)$, then $a\equiv c\space(\text{mod}\space n)$
If $a_1\equiv b_1\space(\text{mod}\space n)$ and $a_2\equiv b_2\space(\text{mod}\space n)$, or if $a\equiv b\space(\text{mod}\space n)$, then:
- $a+k\equiv b+k\space(\text{mod}\space n)$, for any integer $k$
- $ka\equiv kb\space(\text{mod}\space n)$, for any integer $k$
- $a_1+a_2\equiv b_1+b_2\space(\text{mod}\space n)$
- $a_1-a_2\equiv b_1-b_2\space(\text{mod}\space n)$
- $a_1a_2\equiv b_1b_2\space(\text{mod}\space n)$
- $a^k\equiv b^k\space(\text{mod}\space n)$, for any non-negative integer $k$
- $p(a)\equiv p(b)\space(\text{mod}\space n)$, for any polynomial $p(x)$ with integer coefficients
Compatibility with translation, scaling, addition, subtraction, multiplication, exponentiation and polynomial evaluation.
Read exponential expressions
2^16
: two to the power of sixteen. 3^4
: three to the power of four. x^2
: x squared. x^3
: x cubed.